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complex geometry �ow
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SUMMARY

Flow and heat transfer inside an idealized electronics system is simulated using large-eddy simula-
tion (LES)-related approaches that have been validated for simpler canonical �ows. These include:
Yoshizawa LES, detached eddy simulation (DES), limited numerical scales (LNS) and other hybrid
LES–RANS (Reynolds-averaged Navier–Stokes) approaches including a new ILES (implicit LES)–
RANS method. For the ILES, dissipation from the one legged temporal discretization is used to drain
turbulence. The use of di�erential equations, including the Hamilton–Jacobi and Eikonal, to model tur-
bulence distance functions is explored. The Hamilton–Jacobi is shown to be especially compatible with
the zonal RANS–ILES approach and the Eikonal with DES. Performances of the LES-related methods
are compared with explicit algebraic stress unsteady RANS (URANS) results and also measurements.
Considering the problem complexity, generally, for all methods, predicted mean velocities and turbu-
lence intensities are in a reasonable agreement with measurements. Average errors are 15 and 25%,
respectively. With the exception of the zonal ILES–RANS method, turbulence intensities are under-
predicted. For heat transfer, none of the models performs well giving circa 100% errors. Notably, the
LNS performs poorly for both the �ow �eld and heat transfer giving a highly complex RANS–LES
interface with inappropriate upstream LES boundary conditions. DES is found impossible to converge.
This is partly attributed to the irregular LES–RANS interface arising with the method. All the LES
approaches signi�cantly underpredict heat transfer and the URANS over-predicts. Even the increased
�ow activity arising from use of the less dissipative ILES element does not prevent the signi�cant heat
transfer under-prediction. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With ever-increasing power densities the reliable prediction of �uid �ow and heat transfer in
electronics is becoming especially important. In reality, the �ow inside most electronic systems
is turbulent and due to the geometrical complexity also can exhibit large-scale, more coherent,
unsteadiness. Present-day useable turbulence modelling techniques for industrial applications
involve Reynolds-averaged Navier–Stokes (RANS) or unsteady RANS (URANS). To a much
lesser extent pure large-eddy simulation (LES) and blends of LES and (U)RANS can be used.
In (U)RANS, the Navier–Stokes equations (NSE) are essentially, in theory, time averaged to
remove higher frequency temporal components and Lagrangian spatial scales associated with
turbulence. Hence, �ow solutions have a more regular smoother appearance. In contrast to the
(U)RANS, in LES the NSE are spatially �ltered. Eddies smaller than a characteristic resolu-
tion � (typically de�ned by grid spacing), known as sub-grid scales (SGS), are �ltered out
and hence need to be modelled. Eddies larger than � are resolved. Since most turbulence is
resolved and not subjected to the vagaries of modelling, LES is capable of capturing unsteady
�ow feature better than (U)RANS and can give more accurate solutions.
Despite LES being superior to URANS, it still has some theoretical and practical drawbacks

(see References [1, 2]) such as high computational cost for wall-bounded �ows. An alternative
to LES is the monotonically integrated LES (MILES) or ILES introduced by Boris et al. [1].
In ILES, monotone higher order convection or other algorithms are used to discretize the
un�ltered NSE. These algorithms can, through numerical dissipation (and other properties),
produce a built-in �lter and a corresponding implicit SGS model. Grinstein and Fureby [2]
demonstrate that ILES can be successfully used to simulate a wide range of �ows and ow-
ing to the absence of sub-grid stress term calculations, can also lead to substantial savings
in computational e�ort. Although ILES has some theoretical justi�cation from a pragmatic
viewpoint it is likely that in most industrially related LES-type simulations the numerical dis-
sipation (which can arise through many sources including lack of preconditioning in certain
types of �ow solvers) takes on a greater role than that implied by the SGS model. Under
these circumstances it appears most sensible to improve solution accuracy by switching the
SGS model (which often has uncertain applicability) o�. It is in this spirit that the ILES is
explored here. Of course the temporal rather than spatial discretization can be used to supply
�ltering=dissipation. Novel use of the former is tried here.
In addition to ILES, along di�erent lines other approaches aimed at reducing LES compu-

tational costs are hybrid LES–RANS methods. The �rst of these, detached eddy simulation
(DES), was proposed by Spalart et al. [3]. With this, to avoid the need for such �ne grids,
intricate, �ne, anisotropic boundary layer features, requiring especially high resolution (for
LES, �ow aligned streak structures need a grid spacing of around 20 wall units), are (U)RANS
modelled. However, the accuracy advantages of LES are utilized away from walls where struc-
tures are larger and less intricate. Broadly following this strategy, various combinations of
RANS and LES models have been investigated (see References [4–6]). Notably, Tucker [7]
produces hybrid ILES–RANS solutions. With this, the very di�erent turbulence length scales
implied by the RANS and ILES models are blended using a Hamilton–Jacobi (HJ) equation.
It is worth noting here that LES strategies often also include a RANS element. For exam-
ple, some LES practitioners express the modelled turbulence length scale as the min[�d;�]
where � is the Von Karman constant, d the normal wall distance and � a �lter width. This
results in a simple mixing length model near walls.
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HJ-EQUATION-BASED ILES METHOD 1243

Essentially, another hybrid LES–RANS method is the limited numerical scales (LNS)
approach proposed by Batten et al. [8] and inspired by Speziale [9]. The idea of LNS is
to derive the SGS stress from the underlying Reynolds stress via a latency parameter, �,
based on the ratio of products of turbulence length- and velocity-scales. When �=1, cubic
non-linear RANS modelling is applied and when �¡1, LES is used. This is an improvement
on the idea of Speziale [9] which is theoretically �awed in switching directly from URANS
to DNS (direct numerical simulation) with no LES range. Unlike other hybrid LES–RANS
methods, in which RANS modelling is always used near walls and LES away from them,
with LNS, depending on mesh resolution, RANS modelling or LES may occur anywhere. If
the grid is LES su�cient LES will automatically be used. This is attractive since a program
user does not have to be so concerned with traditional LES issues such as whether the grid
has su�cient resolution to reach the inertial sub-range region.
This study considers the con�guration shown in Figure 1, which represents an idealized

central processor unit. Two fans drive the �ow. By electronics system standards these fans
are large and so give rise to a relatively high Reynolds number �ow. To investigate heat
transfer, a heater is mounted on one horizontal surface. Since the ratio of Gr=Re2 (Gr and Re
are the Grashof and Reynolds numbers, respectively) is low (¡0:01), buoyancy forces can
be neglected. Partly owing to the presence of blocks and grills, the Figure 1 geometry �ow is
expected to be complicated exhibiting transition from laminar to turbulent �ow, unsteady sep-
aration, reattachment, strong streamline curvature and regions with impingement. Furthermore,
it is expected that large coherent vortex structures will convect over the heated surface [10].
Also, there is a possibility of non-unique solutions (see References [11, 12]). In addition, the
�ow complexity makes construction of a grid where the cross-stream spacing is su�cient to
resolve streaks challenging. This factor in part makes the current zonal studies sensible.

Figure 1. Schematic of an idealized system studied.
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This paper extends previous (U)RANS [13, 14] studies of this unsteady complex geometry
�ow. The applicability of above-mentioned hybrid (I)LES–RANS, LNS and DES approaches
is considered. To set the performances of these new models into context, results are compared
with zonal k-l=EASM (explicit algebraic stress model [15]) URANS and Yoshizawa [16] LES
results. Also, all results are compared with laser doppler anemometry (LDA) and new heat
transfer measurements.

2. NUMERICAL METHOD

2.1. Governing equations

The following equations governing mass, momentum and energy conservation for incompress-
ible �ows are solved:
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The tilde is used to identify that variables can have dual physical contexts representing time-
averaged or �ltered (spatially averaged) values for URANS and (I)LES, respectively. In
Equations (1)–(3), ũi is a �uid velocity component (i=1; 2; 3 corresponding to the x; y and z
directions, respectively), � the �uid density, � dynamic viscosity, p̃ static pressure, T̃ temper-
ature and t time. Pr is the Prandtl number of the �uid. To close the above equations the stress
tensor, �ij, in Equation (2) and heat �ux tensor, hij, in Equation (3) need to be modelled.

2.2. LES=ILES

In conventional LES, for a SGS model based on the eddy viscosity, the SGS stress tensor, �ij,
is de�ned as

�ij=2�SGSSij − �kk
3
�ij (4)

where �SGS is the SGS eddy viscosity, Sij=(@ũi=@xj+@ũj=@xi)=2 is the strain rate tensor and �ij
the Kronecker delta. Here for LES computations �SGS is evaluated from the Yoshizawa [16]
model. This uses a transport equation for the sub-grid scale k, which takes the following
form:
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where Pk =2�SGSSijSij and �=C�k1:5=�. � is a cell-volume-based �lter, i.e.
�= (�x�y�z)1=3. The value of constant C� is 1.05. In ILES context, although �SGS =0,
an e�ective eddy viscosity can be produced by numerical di�usion.

2.3. Hybrid (I)LES–RANS

Broadly four hybrid (I)LES–RANS approaches are tried. These are DES, Tucker and
Davidson’s [6] k-l-based zonal LES (ZLES), zonal ILES [7] (temporally dissipated) and LNS.
In Z(I)LES, the Wolfshtein [17] k-l RANS model is used near walls. Either the Yoshizawa
LES or ILES is used for the core region. The interface between the RANS and (I)LES
models is de�ned through the dimensionless wall distance (y+int). Results are compared when
the wall shear stress used in y+int is spatially and temporally averaged (y

+
int; ave = 30) and also

based on instantaneous local values (y+int = 30). For k-l=ILES, just y
+
int; ave = 30 is used and the

wall distance is calculated using a HJ equation (see Equation (9)) [7]. The latter smoothly
blends the dramatically di�erent modelled turbulence length scales implied by the RANS and
ILES modelling. For ZLES multigrid based smoothing operators [6] are used. For DES, near
walls the Spalart–Allmaras [18] (S–A) (U)RANS model is used. Away from them essentially
Smagorinsky [19] LES is applied. The interface between these zone is set at yint = 0:65max
(�x;�y;�z) where the � terms are grid spacings. Clearly, the interface is grid controlled
and this can create irregularities.

2.4. Limited Numerical Scales (LNS)

In Batten et al.’s [8] LNS method, the eddy viscosity takes the following form:

�T = �C∗
�f��

k2

�
(6)

where � is the so-called latency parameter. This is de�ned as

�= min[(LV )LES; (LV )RANS]=(LV )RANS (7)

where (LV )LES =CS(L�)2|S| is the product of the LES length and velocity scales and
(LV )RANS = �+C∗

� k
2=� for RANS, in which the constant Cs=0:05; L� =2max[�x;�y;�z];

|S|=√
2SijSij and �=10−20. The form of the transport equation for k is the same as

Equation (5), but �SGS is replaced by �T ; Pk = − �u′
iu′
j@ũi=@xj (the primes representing �uc-

tuating components). The dissipation rate � is evaluated by solving the following equation:
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where E is a source term and Tt = k max(1;
√
2=Rt)=� is a realizable time scale. The Reynolds

stress tensor, −�u′
iu′
j, is computed from a cubic non-linear expression [8]. As to the de�nitions

of C∗
� , f� and other parameters also see Batten et al. [8]. As mentioned before, to large extent,

the mesh used decides the model switch from RANS to LES or the reverse.
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2.5. Wall distance function

Wall ‘distances’ d̃ (again the tilde highlights that a variable with two quite di�erent contexts
can be used) are either evaluated using Poisson [13], Eikonal or HJ equations. The HJ equation
[7] is expressed as

|∇d̃|=1+ f(d̃)∇2d̃+ g(d) (9)

Here f(d)= �0d̃ and g(d)= �1(d=L)n. The length scale L is the distance from walls to the
ILES region and n is a positive integer. When �0 = �1 = 0, Equation (9) reduces to the
hyperbolic natured Eikonal equation. Weak viscosity solutions of this give exact nearest wall
distances d= d̃. The Eikonal equation can be solved by propagating fronts from solid sur-
faces [20]. Here, the equation is propagated towards the RANS=ILES interface. Then at the
interface, the condition d=0 is set and Equation (9) solved using a Newton approach with
�0; �1¿0. The Laplacian enables a smooth transition between the modelled RANS length scale
(that needs an accurate d) and the ILES zone (needing d=0). The function f(d̃) forces
the Laplacian to tend to zero near walls. This ensures near wall distances are accurate. The
function g(d) controls the RANS length scale in the vicinity of the ILES zone. It governs the
biasing of the d̃ maximum. Typical Equation (9) d̃ distributions for various �0 and �1 com-
binations can be found in Reference [7]. For DES d̃ is initialized as 0:65max(�x;�y;�z).
The front propagation naturally terminates at the RANS–LES interface creating a potentially
economical ready to use DES distance scale �eld.

2.6. Heat �ux modelling

The simple eddy di�usivity model is used in this study, which takes the following form:

hj=
�T
Prt

@T̃
@xj

(10)

For URANS, �T =�t (eddy viscosity) and the turbulent Prandtl number Prt =0:9. For LES,
�T =�SGS and Prt =0:4. For ILES, �T =0.

2.7. Calculation of turbulence intensity and percentage errors

Conventionally, the turbulence intensity is de�ned as Ti= u′=U (U—time-mean velocity in
the x direction). Here, for LES-related zonal methods, modelled turbulence contributions are
neglected and u′ is obtained only from the resolved �eld. Therefore, Ti is given by

Ti=

√〈ũũ〉 − 〈ũ〉2
〈ũ〉 (11)

where 〈•〉 denotes a time-averaging operation. When comparing predictions with measure-
ments, the following formulation is used to calculate percentage errors:

ErrorU =
∑m

i=1 |Uexp −Unum|∑m
i=1 |Uexp| ; ErrorTi=

∑m
i=1 |Ti;exp − Ti;num|∑m

i=1 |Ti;exp| (12)

where m is the total number of experimental points, and the subscripts, ‘exp’ and ‘num’,
represent experimental data and numerical values, respectively. At points where numerical
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data points do not coincide exactly with measurements, a sti� quadratic spline interpolation
is used.

2.8. Boundary conditions and numerical details

For velocities, at solid surfaces the usual no-slip and impermeability conditions are applied.
At in�ow boundaries the total pressure is �xed, the normal velocity set to conserve mass
and the remaining velocity components made zero. At �ow outlets the pressure is �xed, the
normal velocity again set to conserve mass and the gradients of all other variables set to zero
in a second order fashion. Prior to the solution starting it is not known which are in�ow and
out�ow boundaries. Therefore, the above boundary conditions are set automatically depending
on the �ow direction at each iteration.
The sensitivity of RANS predictions to assumed values of turbulence intensities at �ow

inlets is tested by varying the intensity between 0 and 10%. Pro�les presented are found
insensitive to this variation.
The slotted grills 1–4 are modelled using loss coe�cients of the form

El = 1
2 K�U

2
j (13)

where El is the loss of energy per unit volume of �uid with a local (not the lower approach
velocity) Uj passing through the grill. For grill 1, K =2 and for the others K =1. These are
standard design guide values for grills of this con�guration.
Fans 1 and 2 are modelled using quadratic momentum sources of the following form:

Ei=C0 + C1Uj + C2U 2
j (14)

where Ei is the energy input per unit volume, Uj is the local normal velocity and the constants
C0; C1 and C2 are given in Table I. These constants are calculated by making least square
�ts to manufacturer’s data. For fan 1 measurements are made for an input voltage of 15 V.
However, data is only available for inputs of 12 and 13:8 V. Therefore, linear extrapolation
is used. Fan 2, is 50% obstructed. To account for this, based on tests carried out by the fan
manufacturer, a loss coe�cient of K =1 is used. For LES-type simulations, at planes where
fans are located stochastic forcing to introduce turbulence is tested. However, this is found
to have little in�uence on results.
The Figure 1 domain size is L=0:75m; H =0:64m and W =0:2m in the x; y and z direc-

tions, respectively. A 105(x)× 99(y)× 51(z) non-uniform grid is used for all computations.
At �rst o�-wall nodes, the average y+ ≈ 2. Except for k-l=ILES and DES computations, wall
distances are obtained from a Poisson equation. For DES the Eikonal is tried. The k-l=ILES
distances are generated by solving Equation (9). For zonal URANS EASM predictions, near
walls Wolfshtein’s k-l model is used. The interface between the k-l and the EASM is set at
y∗
int = 60(y

∗=�yC1=4� k1=2=�).

Table I. Fan constants.

C0 (J=m3) C1 (J s=m4) C2 (J s2=m5)

Fan 1 59 −12 1.1
Fan 2 59.5 −12.5 1
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The �ow equations are solved using a standard LES suitable staggered grid �nite volume
code [13]. Second order central di�erences are used to discretize the convective and di�usion
terms. At walls second order backwards di�erences are used. For the Crank–Nicolson scheme
a one legged temporal discretization is used. By the method of lines we can express the
equations to be solved as ordinary di�erential equations of the following form:

@	
@t
=f(	) (15)

With a two legged approach application of the Crank–Nicolson scheme to the above gives

@	
@t
=
f(	old) + f(	new)

2
(16)

where the ‘old’ and ‘new’ superscripts represent time levels. For a one legged discretization

@	
@t
=f

(
	old + 	new

2

)
(17)

Of course, for a linear function the above two expressions are identical. However, since non-
linear equations are here being solved di�erences will arise. For the NSE f(		)-type terms
occur in the convective terms. To add dissipation, using the one legged discretization we
express these terms as f(	new(	new + 	old)=2). Hence, we include a small dissipative �rst
order fully implicit element. Furthermore, source terms introduced by the fans and grills are
discretized fully implicitly. Also, since for incompressible �ow the pressure varies instanta-
neously, the pressure gradient at the new time level is used. Hence, the temporal discretization
contains the dissipative element given below:

@	
@t
=
f[	new(	old + 	new)]

2
(18)

This will drain turbulence from the resolved larger scales appearing (when using the modi�ed
equation approach) as dissipative terms.

3. RESULTS AND DISCUSSION

For mean velocity pro�les and turbulence intensities comparisons are made with the LDA
measurements of Tucker and Pan [13]. These are available at the six pro�les shown in
Figure 2. These measurements have an estimated uncertainty of ±5%. Velocities are normal-
ized by the average axial velocities of the two fans (U0 ≈ 4:5m=s). Heat transfer comparisons
are made along the heated surface centreline in the x direction. The measured Nusselt number
error is ±5% [21].

3.1. LES=URANS zones and resulting �ow �elds

Figure 3 gives contours identifying RANS and LES regions at around the mid x–y plane for
the LNS, k-l=ILES and the S–A-based DES. For the k-l=ILES and DES for clearer observation
the interface distance has been exaggerated. For DES this is achieved by taking CDES =1:3.
For the k-l=ILES y+int = 100. This is about three times the value used in later simulations. The

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:1241–1257



HJ-EQUATION-BASED ILES METHOD 1249

Figure 2. Positions of six pro�les investigated.

k-l=ILES distances have been generated solving the HJ Equation (9) as outlined in Tucker [7]
with �0 ≈ 0:1 and �1 = 0. The Laplacian in this blends the (U)RANS to the very di�erent
ILES turbulence length scale. The general interface nature is similar to that for k-l=LES, but
with ILES the length scale drop is much more severe. For the DES the hyperbolic natured
Eikonal equation is used (Equation (9) with �0 = �1 = 0). This propagates a front from the
solid surfaces. The front propagation naturally terminates on reaching the LES �lter scale.
Except for LNS, dark areas represent the (I)LES region and the lighter gives the URANS
zone. In the LNS, the light dark area is mostly URANS and the light zones (�¡1) are LES.
As can be seen, for the LNS and DES the interfaces are irregular (if an instantaneous local

wall shear stress value is used, it is also irregular for the k-l=LES—hence, this approach
is not recommended). This is to be expected. Via Equation (7) instantaneous values decide
the LNS interface. For DES it is controlled by the irregular grid. Compared with the other
hybrid methods used here, LNS and DES are both found di�cult to converge. This is mostly
attributed to the irregular interfaces. Also, for LNS, solving one more transport equation
for � detracts from convergence. Although the S–A URANS model proved stable, DES was
impossible to converge for the current complex geometry case. Therefore, DES results cannot
be presented here. The lower modelled viscosity for DES, relative to LNS, is likely to be
a key aspect preventing convergence. Notably, the k-l=ILES gives a smoother interface and
hence sensible LES boundary conditions.
Figure 4 shows instantaneous streamlines at mid x–y plane from the k-l=ILES, k-l=LES

(at y+int = 30), Yoshizawa LES, LNS and k-l=EASM. Massive separation (especially in the
vicinity of the heated surface), numerous vortex structures and strong streamline curvature
can be seen. Comparison of the plots suggests that the k-l=(I)LES and LES capture more
small-scale �ow activity than the URANS k-l=EASM and LNS.
In the channel like region, containing Pro�les 1 and 2 (see Figure 2) all models, except for

the LNS, give a signi�cant backwards mean U velocity (U=U0 ≈ 2). However, for LNS the
�ow in this channel is considerably lower (u=U0 ≈ 0:1) constituting a signi�cant qualitative
�ow solution di�erence.
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Figure 3. Contours of RANS and (I)LES regions around mid x–y plane: (1) for LNS;
(2) for k-l=ILES; and (3) for DES.

The average turbulent viscosity, integrated over the complete domain, for the k-l=ILES,
LNS, k-l=LES (y+int = 30), Yoshizawa LES and k-l=EASM is 7:7e−7; 1:3e−3; 1:4e−4; 7:1e−5

and 1:8e−3 kg=m s, respectively. Analysis shows, consistent with Reference [14], resolved
unsteadiness (averaged over Pro�les 1–6) varies inversely with the average turbulent viscosity.
Figure 5 compares U -velocity distributions for Pro�les 1–6 and the following models:

k-l=ILES, k-l=LES (�xed and dynamic interface) and the k-l=EASM. A qualitative LNS �ow
di�erence was noted above and hence due to poor quantitative accuracy LNS results are
not shown. This aspect is discussed further later. Spatial coordinates are normalized by the
maximum system dimension in each direction. The symbols represent the measurements.
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HJ-EQUATION-BASED ILES METHOD 1251

Figure 4. Mid x–y plane instantaneous streamlines from the k-l=ILES (1), k-l=LES (2),
LES (3), LNS (4) and k-l=EASM (5).

Except for the k-l=ILES, all models give similar results for all six pro�les. It can seen that
models can predict the correct trends for some measurement pro�les, but not in others. This
can also be observed in Figure 6, giving turbulence intensity (Ti) distributions.
To more immediately compare model performances quantitatively, percentage errors for each

pro�le and model are considered using equations (12). Results are summarized in Tables II
and III, where the ‘+’ and ‘−’ symbols represent under- and over-predictions, respectively.
Table II errors for U suggest that although each model does not perform consistently for all
pro�les, except for the LNS, all other models generally produce similar velocity accuracies
with the same velocity under-prediction bias. Table III shows that the Yoshizawa LES gives
the lowest average Ti error. If modelled �uctuations are considered, it would be expected that
the di�erence between the zonal k-l=LES and LES would be smaller. This is because with the
k-l=LES, the k-l RANS is strongly used in the near-wall regions. This modelled component
is convected and di�used away from walls. Hence, the modelled parts have more in�uence
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Figure 5. Time-mean U -velocity distributions for Pro�les 1–6.
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Figure 6. Turbulence intensity distributions for Pro�les 1–6.
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Table II. Percentage errors (%) in velocity.

Model Pro�le 1 Pro�le 2 Pro�le 3 Pro�le 4 Pro�le 5 Pro�le 6 Average

k-l=ILES −23 −19 −12 − 9 −12 −16 −15
k-l=LES (y+int = 30) −21 −16 −14 −16 −8 −15 −15
k-l=LES (y+int;ave = 30) −22 −19 −14 −16 −8 −16 −16
Yoshizawa LES −21 −16 −14 −14 −9 −17 −15
k-l=EASM −17 −14 −13 −17 −11 −15 −15

Table III. Percentage errors (%) in turbulence intensity.

Model Pro�le 1 Pro�le 2 Pro�le 3 Pro�le 4 Pro�le 5 Pro�le 6 Average

k-l=ILES −36 −16 −19 +37 +37 +19 +27
k-l=LES (y+int = 30) −37 −24 −17 +14 −32 −27 −25
k-l=LES (y+int;ave = 30) −34 −19 −17 +17 −30 −19 −23
Yoshizawa LES −35 −17 −14 +13 −21 −28 −21
k-l=EASM −32 −22 −22 −24 −26 −49 −29

on the �ow in the k-l=LES than in the LES. The k-l=ILES gives a larger average error than
the k-l=LES but signi�cantly, unlike all other methods, the Ti error is now positive. Hence,
it would seem that the LES-type solutions have too much dissipation of resolved energy and
the zonal ILES too little. Also from Table III, it can be seen that the LES-related approaches
improve intensity predictions compared to the URANS k-l=EASM result.
It should be mentioned that the LNS performs poorly and in many places gives more than

50% average errors. Even for the case of a simple empty two-dimensional box with a heated
sidewall (see Reference [11]), and marginally more complex geometries [22] the question
of solution uniqueness can be fairly vexing. Shyy [12] also grapples with this problem for
simulations of essentially a simple bifurcating duct, �nding two distinct solutions. Similar
uniqueness issues occur with multi element airfoil con�gurations. For these a controlling factor
is where peaks in turbulence energy, produced by upstream elements, strike the faces of the
downstream elements (see Reference [23]). For the current system, experimental evidence
suggests the �ow character can perhaps depend on the external environment, i.e. the location
of the unit in a room. The poor LNS results could in part be attributed to the LNS model
triggering a solution of a slightly di�erent character to that given by the other models. Further
possible reasons for discrepancies of the LNS and other models are given later.

3.2. Heat transfer results

Figure 7 shows time-mean local Nusselt number Nux along the heated surface centreline in
the x direction for all the models examined, where x0 represents the starting point of the
heater. The local Nusselt number is de�ned as Nux=(x − x0)q=(k(Ts − Tref )), where q is the
measured convective heat �ux, Ts and Tref surface and reference (the location of the reference
point is located just upstream of the heater) temperatures. The symbol k is now used to
represent the thermal conductivity of air. It is found that the LES-related approaches under-
predict Nux especially the LES. The k-l=ILES and k-l=LES approaches predict similar Nux
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Figure 7. Local Nux distributions at the heater surface centreline.

distributions. The k-l=EASM over-predicts Nux. However, it should be noted that when used in
a high Reynolds number form on a coarser grid the EASM gives impressive agreement [21].
Nevertheless, since the one-dimensional stationary �ow wall functions are totally inappropriate
for the separated, highly unsteady and three-dimensional heated �ow region this result must be
regarded as fortuitous and hence is not shown. It might be expected that the added resolved
turbulence activity for the less dissipative k-l=ILES approach would yield the highest heat
transfer levels for the LES-related methods. However, this is not so. Instead it is k-l=LES
with the dynamic interface. It seems possible that the interaction of the strongly time varying
interface properties for this approach excites the near wall �ow hence increasing heat transfer.
However, if this is the case the improved heat transfer is occurring for non-ideal reasons. It is
interesting to note past LES approaches (see Reference [24]) and the recent work of Piomelli
et al. [25] use near wall stochastic forcing. The dynamic interface might, in a crude sense,
be akin to this.
Clearly, unlike for the �ow �eld, for Nux all models show extremely large errors. However,

perhaps this is not too surprising. The high resolution simulations of Chung and Tucker [10],
just focusing on a sharply turned �ow region, show a 500% change in Nux can be induced by
small upstream �ow perturbations. For the complex Figure 1 geometry there are, in addition to
the substantial turbulence modelling errors (especially for heat �ux modelling), also signi�cant
problem de�nition issues, i.e. questions on the impact of how well losses introduced by
grills and also the energy input from fans are modelled. The latter, in practice, introduce
signi�cant �ow unsteadiness and swirl. Also, the lower fan shown in Figure 1 is signi�cantly
obstructed by a casing component and consequently a characteristic curve correction had to
be specially produced by the fan manufacturer. The problem de�nition questions, combined
with experimental, grid dependence and turbulence model errors could easily account for the
complex geometry Nu errors and also the velocity and turbulence intensity errors. Another
key question, as noted earlier, is solution uniqueness. Electronic systems �ows are especially
complex with many �ow inlets and outlets and hence the potential for multiple solutions is
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perhaps signi�cant. This is another aspect worthy of future exploration. Local grid re�nement
studies were not successful in improving Nux prediction. This needs to be further explored.

4. CONCLUSIONS

The k-l=(I)LES, DES, LNS and LES approaches were applied to a complex electronics
geometry, non-isothermal �ow. Comparisons were made with measurements and a k-l=EASM
simulation. Di�erential distance function equations, including the Eikonal and Hamilton–
Jacobi, were used to economically and conveniently assist with the modelling of turbulence
length scales. The Hamilton–Jacobi was shown to be especially compatible with the zonal
RANS–ILES approach and the Eikonal with DES. For the ILES, the one legged temporal
discretization was used to drain turbulence. Generally, all models investigated gave similar
the time-mean velocity predictions, with around a 15% error, based on the same relatively
coarse grid employed. The LES-related methods gave marginally more accurate turbulence
intensities than the URANS k-l=EASM. However, with the exception of the zonal ILES–
RANS method, turbulence intensities were under-predicted by around 25%. The LNS method
performed especially poorly with mean velocity errors in excess of 50%. This might be
attributed to solution non-uniqueness issues. DES solutions could not be converged. This is
partly attributed to the grid controlled irregular interface.
Heat transfer results were poor (circa 100% errors). However, it is perhaps worth noting

that most established heat transfer measurement data is based on logarithmic scalings. The
k-l=EASM model over-predicts heat transfer and the others under-predict, especially the pure
LES. The increased �ow activity arising from use of the less dissipative ILES element did not
signi�cantly improve the predicted heat transfer. However, the added �ow activity introduced
by the use of a dynamic LES–RANS interface was found helpful. Since the arising interface
is highly irregular this approach is not recommended.
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